
www.manaraa.com

Aspect-Oriented Programming

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, John Irwin

Published in proceedings of the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241. June 1997.

© Copyright 1997 Springer-Verlag

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

www.manaraa.com

A s p e c t - O r i e n t e d P r o g r a m m i n g

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier and John Irwin

Xerox Palo Alto Research Center∗

We have found many programming problems for which neither procedural
nor object-oriented programming techniques are sufficient to clearly capture
some of the important design decisions the program must implement. This
forces the implementation of those design decisions to be scattered through-
out the code, resulting in “tangled” code that is excessively difficult to de-
velop and maintain. We present an analysis of why certain design decisions
have been so difficult to clearly capture in actual code. We call the proper-
ties these decisions address aspects, and show that the reason they have
been hard to capture is that they cross-cut the system’s basic functionality.
We present the basis for a new programming technique, called aspect-
oriented programming, that makes it possible to clearly express programs
involving such aspects, including appropriate isolation, composition and re-
use of the aspect code. The discussion is rooted in systems we have built
using aspect-oriented programming.

1. Introduction

Object-oriented programming (OOP) has been presented as a technology that
can fundamentally aid software engineering, because the underlying object
model provides a better fit with real domain problems. But we have found
many programming problems where OOP techniques are not sufficient to
clearly capture all the important design decisions the program must implement.
Instead, it seems that there are some programming problems that fit neither the
OOP approach nor the procedural approach it replaces.

This paper reports on our work developing programming techniques that
make it possible to clearly express those programs that OOP (and POP) fail to
support. We present an analysis of why some design decisions have been so
difficult to cleanly capture in actual code. We call the issues these decisions
address aspects, and show that the reason they have been hard to capture is that
they cross-cut the system’s basic functionality. We present the basis for a new
programming technique, called aspect-oriented programming (AOP), that

∗ 3333 Coyote Hill Road, Palo Alto, CA 94304, USA. gregor@parc.xerox.com

www.manaraa.com

makes it possible to clearly express programs involving such aspects, including
appropriate isolation, composition and reuse of the aspect code.
We think of the current state of AOP research as analogous to that of OOP 20
years ago. The basic concepts are beginning to take form, and an expanding
group of researchers are using them in their work [1, 4, 13, 28]. Furthermore,
while AOP qua AOP is a new idea, there are existing systems that have AOP-
like properties. The contribution of this paper is an analysis of the problems
AOP is intended to solve, as well as an initial set of terms and concepts that
support explicit AOP-based system design.

The paper presents AOP in an example-driven way— the generalizations
and definitions are all derived from examples, rather than presented in ad-
vance. Section 3 uses a medium-scale example to present the aspect-tangling
problem AOP solves; the section culminates with a definition of the term as-
pect. Section 4 presents several more small examples of aspects. Sections 5
and 6 each provide an example of a complete AOP system. The remaining
sections present future work, related work and conclusions.

2. Background Assumptions

This section outlines important assumptions about the relationship between
programming languages and software design processes that underlie the rest of
the paper.

Software design processes and programming languages exist in a mutually
supporting relationship. Design processes break a system down into smaller
and smaller units. Programming languages provide mechanisms that allow the
programmer to define abstractions of system sub-units, and then compose those
abstractions in different ways to produce the overall system. A design process
and a programming language work well together when the programming lan-
guage provides abstraction and composition mechanisms that cleanly support
the kinds of units the design process breaks the system into.

From this perspective, many existing programming languages, including
object-oriented languages, procedural languages and functional languages, can
be seen as having a common root in that their key abstraction and composition
mechanisms are all rooted in some form of generalized procedure. For the pur-
pose of this paper we will refer to these as generalized-procedure (GP) lan-
guages. (This is not to say that we are ignorant of the many important advan-
tages of OOP languages! It is only to say that for the purposes of the discussion
in this paper, it is simpler to focus on what is common across all GP lan-
guages.)

The design methods that have evolved to work with GP languages tend to
break systems down into units of behavior or function. This style has been

www.manaraa.com

called functional decomposition [25-27].1 The exact nature of the decomposi-
tion differs between the language paradigms of course, but each unit is encap-
sulated in a procedure/function/object, and in each case, it feels comfortable to
talk about what is encapsulated as a functional unit of the overall system. This
last point may be so familiar that it feels somewhat redundant. But it is im-
portant that we give it explicit attention now, because in the course of this pa-
per will be considering units of system decomposition that are not functional.

3. What Are Aspects?

To better understand the origins of tangling problems, and how AOP works to
solve them, this section is organized around a detailed example, that is based
on a real application we have been working with [18, 22]. There are three im-
plementations of the real application: easy to understand but inefficient, effi-
cient but difficult to understand, and an AOP-based implementation that is
both easy to understand and efficient. The presentation here will be based on
three analogous but simplified implementations.

Consider the implementation of a black-and-white image processing system,
in which the desired domain model is one of images passing through a series of
filters to produce some desired output. Assume that important goals for the
system are that it be easy to develop and maintain, and that it make efficient
use of memory. The former because of the need to quickly develop bug-free
enhancements to the system. The latter because the images are large, so that in
order for the system to be efficient, it must minimize both memory references
and overall storage requirements.

3.1 Basic Functionality

Achieving the first goal is relatively easy. Good old-fashioned procedural pro-
gramming can be used to implement the system clearly, concisely, and in good
alignment with the domain model. In such an approach the filters can be de-
fined as procedures that take several input images and produce a single output
image. A set of primitive procedures would implement the basic filters, and
higher level filters would be defined in terms of the primitive ones. For exam-
ple, a primitive or! filter, which takes two images and returns their pixelwise
logical or, might be implemented as:2

1 In some communities this term connotes the use of functional programming languages
(i.e. side-effect free functions), but we do not use the term in that sense.
2 We have chosen Common Lisp syntax for this presentation, but this could be written
fairly easily in any other Algol-like language.

www.manaraa.com

(defun or! (a b)
 (let ((result (new-image)))
 (loop for i from 1 to width do
 (loop for j from 1 to height do
 (set-pixel result i j
 (or (get-pixel a i j)
 (get-pixel b i j)))))
 result))

the operation
to perform on
the pixels

loop over all
the pixels in the

input images

storing pixels in
the result image

 Starting from or! and other primitive filters, the programmer could work
up to the definition of a filter that selects just those black pixels on a horizontal
edge, returning a new image consisting of just those boundary pixels.

functionality implementation
pixelwise logical operations written using loop primitive as above
shift image up, down written using loop primitive;

slightly different loop structure
difference of two images (defun remove! (a b)

 (and! a (not! b)))
pixels at top edge of a region (defun top-edge! (a)

 (remove! a (down! a)))
pixels at bottom edge of a region (defun bottom-edge! (a)

 (remove! a (up! a)))
horizontal edge pixels (defun horizontal-edge! (a)

 (or! (top-edge! a)
 (bottom-edge! a)))

Note that only the primitive filters deal explicitly with looping over the pix-
els in the images. The higher level filters, such as horizontal-edge!, are
expressed clearly in terms of primitive ones. The resulting code is easy to read,
reason about, debug, and extend— in short, it meets the first goal.

3.2 Optimizing Memory Usage

But this simple implementation doesn't address the second goal of optimizing
memory usage. When each procedure is called, it loops over a number of input
images and produces a new output image. Output images are created fre-
quently, often existing only briefly before they are consumed by some other
loop. This results in excessively frequent memory references and storage allo-

www.manaraa.com

cation, which in turn leads to cache misses, page faults, and terrible perform-
ance.
The familiar solution to the problem is to take a more global perspective of the
program, map out what intermediate results end up being inputs to what other
filters, and then code up a version of the program that fuses loops appropriately
to implement the original functionality while creating as few intermediate im-
ages as possible. The revised code for horizontal-edge! would look
something like:

(defun horizontal-edge! (a)
 (let ((result (new-image))
 (a-up (up! a))
 (a-down (down! a)))
 (loop for i from 1 to width do
 (loop for j from 1 to height do
 (set-pixel result i j
 (or (and (get-pixel a i j)
 (not (get-pixel a-up i j)))
 (and (get-pixel a i j)
 (not (get-pixel a-down i j)))))))
 result))

only three result
images are created

operations
from many
sub-filters

one loop structure
shared by many

component filters

Compared to the original, this code is all tangled up. It incorporates all the
different filters that horizontal-edge! is defined in terms of, and fuses
many, but not all, of their loops together. (The loops for up! and down! are
not fused because those operations have a different looping structure.)3 In
short, revising the code to make more efficient use of memory has destroyed the
original clean component structure.

Of course, this is a very simple example, and it is not so difficult to deal
with such a small amount of tangled code. But in real programs the complexity
due to such tangling quickly expands to become a major obstacle to ease of code
development and maintenance. The real system this example was drawn from
is an important sub-component of an optical character recognition system. The
clean implementation of the real system, similar to the first code shown above,
is only 768 lines of code; but the tangled implementation, which does the fu-
sion optimization as well as memoization of intermediate results, compile-time
memory allocation and specialized intermediate datastructures, is 35213 lines.
The tangled code is extremely difficult to maintain, since small changes to the
functionality require mentally untangling and then re-tangling it.

3 Our AOP-based re-implementation of the full application fuses these other loops as
well. We chose not to show that code here because it is so tangled that it is distractingly
difficult to understand.

www.manaraa.com

3.3 Cross-Cutting

Returning to the example code, Figure 1 provides a different basis for under-
standing the tangling in it. On the left there is the hierarchical structure of the
filtering functionality. On the right there is a data flow diagram for the origi-
nal, un-optimized version of horizontal-edge!. In this diagram, the
boxes and lines show the primitive filters and data flow between them. The
dashed oval shows the boundary of what is fused into a single loop in the opti-
mized version of horizontal-edge!.

Notice that the fusion oval does not incorporate all of horizontal-
edge! In fact, it doesn’t align with any of the hierarchical units on the left.
While the two properties being implemented— the functionality and the loop
fusion— both originate in the same primitive filters, they must compose differ-
ently as filters are composed. The functionality composes hierarchically in the
traditional way. But the loop fusion composes by fusing the loops of those
primitive filters that have the same loop structure and that are direct neighbors
in the data flow graph. Each of these composition rules is easy to understand
when looking at its own appropriate picture. But the two composition relation-
ships cut each other so fundamentally that each is very difficult to see in the
other’s picture.

This cross-cutting phenomena is directly responsible for the tangling in the
code. The single composition mechanism the language provides us— procedure
calling— is very well suited to building up the un-optimized functional units.
But it can’t help us compose the functional units and the loop fusion simultane-

remove!down!

or!

up!

top-edge!

horizontal-edge!

bottom-edge!

and!not!

or!

not!

up!

not!

down!

and! and!

a

Figure 1: Two different diagrams of the un-optimized horizontal-edge! filter.
On the left is the functional decomposition, which aligns so directly with the domain
model. On the right is a data flow diagram, in which the boxes are the primitive filters
and the edges are the data flows between them at runtime. The box labeled a at the
bottom is the input image.

www.manaraa.com

ously, because they follow such different composition rules and yet must co-
compose. This breakdown forces us to combine the properties entirely by
hand— that’s what happening in the tangled code above.

In general, whenever two properties being programmed must compose dif-
ferently and yet be coordinated, we say that they cross-cut each other. Because
GP languages provide only one composition mechanism, the programmer must
do the co-composition manually, leading to complexity and tangling in the
code.

We can now define two important terms more precisely:

With respect to a system and its implementation using a GP-based language,
a property that must be implemented is:

A component, if it can be cleanly encapsulated in a generalized proce-
dure (i.e. object, method, procedure, API). By cleanly, we mean well-
localized, and easily accessed and composed as necessary. Components
tend to be units of the system’s functional decomposition, such as image
filters, bank accounts and GUI widgets.

An aspect, if it can not be cleanly encapsulated in a generalized proce-
dure. Aspects tend not to be units of the system’s functional decomposi-
tion, but rather to be properties that affect the performance or semantics of
the components in systemic ways. Examples of aspects include memory ac-
cess patterns and synchronization of concurrent objects. (Section 4 provides
more examples of aspects.)

Using these terms it is now possible to clearly state the goal of AOP: To
support the programmer in cleanly separating components and aspects from
each other,4 by providing mechanisms that make it possible to abstract and
compose them to produce the overall system. This is in contrast to GP-based
programming, which supports programmers in separating only components
from each other by providing mechanisms that make it possible to abstract and
compose them to produce the overall system.5

4 Components from each other, aspects from each other, and components from aspects.
5 Our analysis of aspects as system properties that cross-cut components helps explain
the persistent popularity of mechanisms like dynamic scoping, catch and throw in oth-
erwise purely GP languages. These mechanisms provide a different composition
mechanism, that helps programmers implement certain aspects in their systems.

www.manaraa.com

4. Other Examples of How Aspects Cross-Cut Compo-
nents

Before going on to the presentation of AOP, and how it solves the problem of
aspect tangling in code, this section briefly presents several more examples of
aspects and components. For each example in the table below we list an appli-
cation, a kind of GP language that would do a good job of capturing the com-
ponent structure of the application, a likely component structure for the appli-
cation if programmed using that kind of language, and the aspects that would
cross-cut that component structure.

application GP language components aspects

image
processing

procedural filters loop fusion

result sharing

compile-time memory
allocation

digital
library

object-oriented repositories,
printers,
services

minimizing network
traffic

synchronization
constraints

failure handling

matrix
algorithms

procedural linear algebra
operations

matrix representation

permutation

floating point error

Some aspects are so common that they can easily be thought about without
reference to any particular domain. One of the best examples is error and fail-
ure handling. We are all familiar with the phenomenon that adding good sup-
port for failure handling to a simple system prototype ends up requiring many
little additions and changes throughout the system. This is because the differ-
ent dynamic contexts that can lead to a failure, or that bear upon how a failure
should be handled, cross-cut the functionality of systems.

Many performance-related issues are aspects, because performance optimi-
zations often exploit information about the execution context that spans com-
ponents.

www.manaraa.com

5. First Example of AOP

In this section we return to the image processing example, and use it to sketch
an AOP-based re-implementation of that application. The presentation is based
on a system we have developed, but is simplified somewhat. The complete
system is discussed in [22]. The goal of this section is to quickly get the com-
plete structure of an AOP-based implementation on the table, not to fully ex-
plain that structure. Section 6 will provide that explanation.

The structure of the AOP-based implementation of an application is analo-
gous to the structure of a GP-based implementation of an application. Whereas
a GP-based implementation of an application consists of: (i) a language, (ii) a
compiler (or interpreter) for that language, and (iii) a program written in the
language that implements the application; the AOP-based implementation of an
application consists of: (i.a) a component language with which to program the
components, (i.b) one or more aspect languages with which to program the
aspects, (ii) an aspect weaver for the combined languages, (iii.a) A component
program, that implements the components using the component language, and
(iii.b) one or more aspect programs that implement the aspects using the aspect
languages. Just as with GP-based languages, AOP languages and weavers can
be designed so that weaving work is delayed until runtime (RT weaving), or
done at compile-time (CT weaving).

5.1 The Component Language & Program

In the current example we use one component language and one aspect lan-
guage. The component language is similar to the procedural language used
above, with only minor changes. First, filters are no longer explicitly proce-
dures. Second, the primitive loops are written in a way that makes their loop
structure as explicit as possible. Using the new component language the or!
filter is written as follows:

(define-filter or! (a a)
 (pixelwise (a b) (aa bb) (or aa bb)))

The pixelwise construct is an iterator, which in this case walks through
images a and b in lockstep, binding aa and bb to the pixel values, and re-
turning a image comprised of the results. Four similar constructs provide the
different cases of aggregation, distribution, shifting and combining of pixel
values that are needed in this system. Introducing these high-level looping
constructs is a critical change that enables the aspect languages to be able to
detect, analyze and fuse loops much more easily.

www.manaraa.com

5.2 The Aspect Language & Program

The design of the aspect language used for this application is based on the ob-
servation that the dataflow graph in Figure 1 makes it easy to understand the
loop fusion required. The aspect language is a simple procedural language that
provides simple operations on nodes in the dataflow graph. The aspect pro-
gram can then straightforwardly look for loops that should be fused, and carry
out the fusion required. The following code fragment is part of the core of that
aspect program— it handles the fusion case discussed in Section 5. It checks
whether two nodes connected by a data flow edge both have a pixelwise loop
structure, and if so it fuses them into a single loop that also has a pixelwise
structure, and that has the appropriate merging of the inputs, loop variables and
body of the two original loops.

 (cond ((and (eq (loop-shape node) ’pointwise)
 (eq (loop-shape input) ’pointwise))
 (fuse loop input ’pointwise
 :inputs (splice …)
 :loop-vars (splice …)
 :body (subst …))))

Describing the composition rules and fusion structure for the five kinds of
loops in the real system requires about a dozen similar clauses about when and
how to fuse. This is part of why this system could not be handled by relying on
an optimizing compiler to do the appropriate fusion— the program analysis and
understanding involved is so significant that compilers cannot be counted upon
to do so reliably. (Although many compilers might be able to optimize this
particular simple example.) Another complication is the other aspects the real
system handles, including sharing of intermediate results and keeping total
runtime memory allocation to a fixed limit.

5.3 Weaving

The aspect weaver accepts the component and aspect programs as input, and
emits a C program as output. This work proceeds in three distinct phases, as
illustrated in Figure 2.

In phase 1 the weaver uses unfolding as a technique for generating a data
flow graph from the component program. In this graph, the nodes represent
primitive filters, and the edges represent an image flowing from one primitive
filter to another. Each node contains a single loop construct. So, for example,
the node labeled A contains the following loop construct, where the #<… > re-
fer to the edges coming into the node:

 (pointwise (#<edge1> #<edge2>) (i1 i2) (or i1 i2))

www.manaraa.com

In phase 2 the aspect program is run, to edit the graph by collapsing nodes
together and adjusting their bodies accordingly. The result is a graph in which
some of the loop structures have more primitive pixel operations in them than
before phase 2. For example, the node labeled B, which corresponds to the
fusion of 5 loops from the original graph, has the following as its body:

 (pointwise (#<edge1> #<edge2> #<edge3>) (i1 i2 i3)
 (or (and (not i1) i2) (and (not i3) i2))))

Finally, in phase 3, a simple code generator walks over the fused graph,
generating one C function for each loop node, and generating a main function
that calls the loop functions in the appropriate order, passing them the appro-
priate results from prior loops. The code generation is simple because each
node contains a single loop construct with a body composed entirely of primi-
tive operations on pixels.

 A crucial feature of this system is that the weaver is not a “smart” com-
piler, which can be so difficult to design and build. By using AOP, we have
arranged for all the significant implementation strategy decisions— all the ac-
tual smarts— to be provided by the programmer, using the appropriate aspect
languages. The weaver’s job is integration, rather than inspiration.6

6 While asking the programmer to explicitly address implementation aspects sounds
like it might be a step backwards, our experience with work on open implementation

(footnote continued)

(define-filter or! (a b)
 (pixelwise (a b) (aa bb) (or a b)))

(define-filter and! …) . . .

 . .
(cond ((and (eq (loop-shape node) …)
 (eq (loop-shape input) …))
 (fuse loop input ’pointwise …))) . .

void main (int* i1)
 {… };
void loop1(int* i1)
 {… };

Aspect Weaver
A

B

3

1 2

Figure 2: The aspect weaver for image processing applications works in three
phases.

www.manaraa.com

5.4 Results

The real system is somewhat more complex of course. For one thing, there are
two additional aspect programs, one of which handles sharing of common sub-
computations, and one of which ensures that the minimum possible number of
images are allocated at any one time. In this system, all three of the aspect
programs are written in the same aspect language.

In this example, the AOP based re-implementation has met the original de-
sign goals— the application code is easy to reason about, develop and maintain,
while at the same time being highly efficient. It is easy for the programmer to
understand the components and how they compose. It is easy for the pro-
grammer to understand the aspects, and how they compose. It is easy for the
programmer to understand the effect of the aspect programs on the total output
code. Changes in either the filter components or the fusion aspect are easily
propagated to the whole system by simply re-weaving. What isn’t easy is for
the programmer to generate the details of the output code. The power of the
AOP approach is that the weaver handles these details, instead of the pro-
grammer having to do the tangling manually.

Our AOP based re-implementation of the application is 1039 lines of code,
including the component program and all three aspect programs. The aspect
weaver itself, including a reusable code generation component is 3520 lines
(the true kernel of the weaver is 1959 lines). The performance of the re-
implementation is comparable to a 35213 line manually tangled version (the
time efficiency is worse and the space efficiency is better).7

As with many other software engineering projects, it is extremely difficult
to quantify the benefits of using AOP without a large experimental study, in-
volving multiple programmers using both AOP and traditional techniques to
develop and maintain different applications [6, 21, 36]. Such a study has been
beyond the scope of our work to date, although we hope to do one in the future.
In the meantime, we have developed one initial measure of the degree to which
applying AOP techniques can simplify an application. This measure compares

suggests that in fact it isn’t [9, 10, 12, 17] While the programmer is addressing imple-
mentation in the memory aspect, proper use of AOP means that they are expressing
implementation strategy at an appropriately abstract level, through an appropriate aspect
language, with appropriate locality. They are not addressing implementation details,
and they are not working directly with the tangled implementation. In evaluating the
AOP-based implementation it is important to compare it with both the naïve inefficient
implementation and the complex efficient implementation.
7 Our current code generator doesn’t use packed datastructures, this results in a factor
of 4 performance penalty between the hand-optimized implementation and the aspect-
oriented implementation. The aspect-oriented implementation is nonetheless over 100
times faster than the naive implementation.

www.manaraa.com

a GP-based implementation of an application to an AOP-based implementation
of the same application. It measures the degree to which the aspects are more
concisely coded in the AOP-based implementation than in a non-AOP based
implementation. The general equation for this measure, as well as the numbers
for this particular application are as follows:

 tangled code size - component program size 35213 - 756

 sum of aspect program sizes 352

reduction in
bloat due to

tangling
98

In this metric, any number greater than 1 indicates a positive outcome of
applying AOP. This application represents an extremely large gain from using
AOP, in other applications we have developed the gain ranges from 2 to this
number [8, 14, 22]. It could be said that the size of the weaver itself should be
included in the sum in the denominator. The point is debatable, since the
weaver is usable by any number of similar image processing applications, not
just the table recognizer. But we note that even with the entire weaver in-
cluded, this metric evaluates to 9.

Any single metric has somewhat limited utility. We believe that this one is
useful in this case because on the other important grounds of performance, the
AOP-based implementation of the application is comparable to the non-AOP
based implementation. Section 7 presents some of the requirements we have
identified for quantitative measures of AOP utility.

6. Second Example of AOP

This section uses a second example of an AOP-based system to elaborate on
component language design, aspect language design and weaving. Once again,
the example is a simplified version of a real system we are developing, which is
described in [14]. The example comes from the document processing domain
where we wanted to implement a distributed digital library that stores docu-
ments in many forms and provides a wide range of operations on those docu-
ments. The component language, aspect languages and aspect weaver pre-
sented in this section are more general-purpose in nature than the highly do-
main-specific example in the previous section.

The functionality of this system is well captured using an object-oriented
model. In such an approach the objects are documents, repositories, different
printable forms for the documents (pdf, ps, rip…), printers, servers etc. There
are several aspects of concern, including:

• Communication, by which we mean controlling the amount of network
bandwith the application uses by being careful about which objects and

www.manaraa.com

sub-objects get copied in remote method calls. For example, we want
to be sure that when a book object is included in a remote method in-
vocation, the different printed representations of the book aren’t sent
across the wire unless they will be needed by the receiving method.

• Coordination constraints, by which we mean the synchronization
rules required to ensure that the component program behaves correctly
in the face of multiple threads of control.

• Failure handling, by which we mean handling the many different
forms of failure that can arise in a distributed system in an appropri-
ately context-sensitive way.

For now, we will continue with just the communication aspect. Handling
both communication and coordination using AOP is discussed in [14]. Failure
handling using AOP is a future research goal.

6.1 The Component Language & Program

Designing an AOP system involves understanding what must go into the com-
ponent language, what must go into the aspect languages, and what must be
shared among the languages. The component language must allow the pro-
grammer to write component programs that implement the system’s function-
ality, while at the same time ensuring that those programs don’t pre-empt any-
thing the aspect programs need to control. The aspect languages must support
implementation of the desired aspects, in a natural and concise way. The com-
ponent and aspect languages will have different abstraction and composition
mechanisms, but they must also have some common terms, these are what
makes it possible for the weaver to co-compose the different kinds of programs.

To keep the common terms from becoming points of contention, the aspect
languages must address different issues than the component languages. In the
image processing system, replacing low-level loops with the higher-level loop-
ing primitives is an example of ensuring that component programs don’t pre-
empt aspect programs. This change makes it easier for the aspect programs to
detect and implement opportunities for loop fusion.

In this example, component programs must implement elements such as
books, repositories, and printers. In order to allow the communication aspect
program to handle communication, component programs must avoid doing so.
In this case Java™ serves quite well as the component language. It provides an
object model that implements the appropriate components, and avoids ad-
dressing the communication aspect.8 So, using Java as our component lan-

8 [14] explains that in order to support the coordination aspect language, some lower-
level synchronization features must be removed from Java before it can be used as the

(footnote continued)

www.manaraa.com

guage, the definition of two simple classes, books and repositories of books,
look like:

component language. These are the keyword synchronized, and the methods
wait, notify and notifyAll.

public class Book {
 String title, author;
 int isbn;
 OCR ocr;
 PDF pdf;
 Postscript ps;
 RIP rip;

 public String get_title()
{
 return title;
 }
 public String get_author()
{
 return author;
 }
public int get_isbn() {
 return isbn;
 }
}

public class Repository {
 private Book books[];
 private int nbooks = 0;

 public Repository (int dbsize)
 {
 books = new Book[dbsize];
 }
 public void register (Book b)
 {
 books[nbooks++] = b;
 }
 public void unregister(Book b)
 { … }
 public Book lookup (String s)
 { … }
}

6.2 The Aspect Language & Program

Communication aspect programs would like to be able to control the amount of
copying of arguments that takes place when there is a remote method invoca-
tion. To do this, the aspect language must effectively allow them to step into
the implementation of method invocation, to detect whether it is local or re-
mote, and to implement the appropriate amount of copying in each case.

One way to do this is to provide runtime reflective access to method invoca-
tion. As has been shown in [7, 23, 35, 37] such reflective access can be used to
control the communication aspect of a distributed object system. But this kind
of reflective access is so powerful that it can be dangerous or difficult to use.
So in this case we have chosen to provide a higher-level aspect language, that is
more tailored to the specific aspect of controlling copying in remote method
invocations.

The communication aspect language we have designed allows the pro-
grammer to explicitly describe how much of an object should be copied when it

www.manaraa.com

is passed as an argument in a remote method invocation. Using this language,
the following fragment of the communication aspect program says that when
books are registered with a repository, all of their sub-objects should be copied;
when they are de-registered or returned as the result of a lookup, only the ISBN
number is copied. The rest of the book, including large sub-objects such as the
printable representations, is not copied unless it is needed at some later time.

remote Repository {
 void register (Book);
 void unregister (Book: copy isbn);
 Book: copy isbn lookup(String);
}

6.3 Aspect Weaver

Aspect weavers must process the component and aspect languages, co-
composing them properly to produce the desired total system operation. Essen-
tial to the function of the aspect weaver is the concept of join points, which are
those elements of the component language semantics that the aspect programs
coordinate with.

In the image processing example, the join points are the data flows of the
component program. In this distributed objects example, the join points are the
runtime method invocations in the component program. These two examples
serve to illustrate an important point about join points— they are not necessarily
explicit constructs in the component language. Rather, like nodes in the da-
taflow graph and runtime method invocations they are clear, but perhaps im-
plicit, elements of the component program’s semantics.

Aspect weavers work by generating a join point representation of the com-
ponent program, and then executing (or compiling) the aspect programs with
respect to it. In the digital library example, the join-point representation in-
cludes information about dynamic method invocations such as the concrete
classes of the arguments and their location. The join point representation can
be generated at runtime using a reflective runtime for the component language.
In this approach, the aspect language is implemented as a meta-program, called
at each method invocation, which uses the join point information and the aspect
program, to know how to appropriately marshal the arguments.9 Thus the
higher-level aspect language we have designed is implemented on top of a
lower level one, as often happens in GP languages.

9 In our actual system we use compile-time reflective techniques, so that no interpretive
overhead is incurred at runtime.

www.manaraa.com

In the image processing application, the join point representation is quite
simple. It is just the data flow graph, operations to access the body of nodes,
and operations to edit the graph.

7. Open Issues

As an explicit approach to programming, AOP is a young idea. Our work to
date has been primarily focused on designing and implementing aspect-oriented
programming languages, and using those languages to develop prototype appli-
cations. This programming-centric initial focus has been natural, and it paral-
lels the early development of OOP. But there is a great deal of work still to be
done to assess the overall utility of AOP, to better understand its relation to
existing ideas, and to further develop it so that it can be useful for a wide range
of users.

One important goal is quantitative assessment of the utility of AOP. How
much does it help in the development of real-world applications? How much
does it help with maintenance? Can we develop measures of which applica-
tions it will be more or less useful for? This is a difficult problem, for all the
same reasons that quantitative assessment of the value of OOP has been diffi-
cult, but we believe that it is important to begin work on this, given that it will
take time to get solid results.

We also believe it is important to begin a systematic study to find existing
systems that have AOP-like elements in their design. We see this as a way to
quickly accelerate development of the AOP ideas, by providing a way to get
rough empirical evidence without having to build large new systems from the
ground up.

Another important area for exploration is the space of different kinds of
component and aspect language designs. Can we develop a collection of com-
ponent and aspect languages that can be plugged together in different ways for
different applications? Can we use meta-level frameworks [2, 3, 20, 38] to
build such a collection?

What theoretical support can be developed for AOP? What kinds of theo-
ries can best describe the interaction between aspects and components and how
they must be woven? Can such theories support development of a practical
weaving toolkit?

What about the analysis and design process? What are good design princi-
ples for aspectual decomposition? What are good “module” structures for as-
pect programs? How can we train people to identify aspects? Clearly separate
them? Write aspect programs? Debug AOP systems? Document AOP sys-
tems?

Another important area of exploration is the integration of AOP with ex-
isting approaches, methods, tools and development processes. As the examples
in this paper show, AOP can be used as an improvement to existing techniques.

www.manaraa.com

To fulfill this promise it must developed it a way that integrates well with those
techniques.

8. Related Work

In this section we give a brief survey of work related to ours. We start with
work that is more closely related and proceed out to work that is less closely
related.

8.1 Work Explicitly Connected to AOP

Several other groups have begun to explicitly consider their work in AOP
terms. These include:

• Mehmet Aksit et. al., at the University of Twente, have developed the
composition filters object model, which provides control over mes-
sages received and sent by an object [1]. In their work, the compo-
nent language is a traditional OOP, the composition filters mechanism
provides an aspect language that can be used to control a number of
aspects including synchronization and communication. Most of the
weaving happens at runtime; the join points are the dynamic message
sends and receives arriving at an object.

• Calton Pu et. al. at the Oregon Graduate Institute, in their work on
Synthetix, are developing high performance, high portability and high
adaptiveness OS kernels [19, 28]. In their work, the components are
familiar functional elements of OS kernels. The aspects are primarily
optimizations based on invariants that relate to how a service is being
used. Their weaver technology uses partial evaluation to effectively
specialize the kernel code for particular use cases. Their code is
structured to expose as join points those places where an invariant be-
comes or ceases to be true.

• Karl Lieberherr et. al., at Northeastern University are developing
techniques that make object-oriented programs more reusable and less
brittle in the face of common program evolution tasks [13, 15, 31]. In
their work, the component languages are existing OOPs like C++ and
Java. Succinct traversal specifications [13] and context objects [31]
provide aspect languages that can be used to address a variety of cross-
cutting issues. Weaving of aspect programs that use succinct traversal
specification is compile-time oriented, the join point representation is,
roughly speaking, the class graph. Weaving of aspect programs that
use context objects is more runtime oriented, the join points are the
dynamic method and function calls.

www.manaraa.com

8.2 Reflection and Metaobject Protocols

Aspect-oriented programming has a deep connection with work in computa-
tional reflection and metaobject protocols [11, 20, 24, 32, 34, 38]. A reflective
system provides a base language and (one or more) meta-languages that pro-
vide control over the base language’s semantics and implementation. The meta
languages provide views of the computation that no one base language compo-
nent could ever see, such as the entire execution stack, or all calls to objects of a
given class. Thus, they cross-cut the base level computation. In AOP terms,
meta-languages are lower-level aspect languages whose join points are the
“hooks” that the reflective system provides. AOP is a goal, for which reflection
is one powerful tool.

We have exploited this connection to great advantage in our work on AOP.
When prototyping AOP systems we often start by developing simple metaobject
protocols for the component language, and then prototype imperative aspect
programs using them. Later, once we have a good sense of what the aspect
programs need to do, we develop more explicit aspect language support for
them.

 The connection is particularly evident in section 6, where the aspect lan-
guages we provided could have been layered on top of a reflective architecture.
Similarly, the loop fusion aspect described in Section 5 can be implemented,
with some degree of efficiency, using the method combination facility in the
CLOS metaobject protocol [11, 33]. This connection is also evident in the
work mentioned in Section 8.1; both the Demeter work and the composition
filters work have been described as being reflective facilities [16].

8.3 Program Transformation

The goal of work in program transformation is similar to that of AOP. They
want to be able to write correct programs in a higher-level language, and then
mechanically transform those program into ones with identical behavior, but
more efficient performance. In this style of programming, some of the proper-
ties the programmer wants to implement are written in an initial program.
Other properties are added by passing that initial program through various
transformation programs. This separation is similar in spirit to the compo-
nent/aspect program separation.

But the notion of component and aspect are new to AOP. These terms pro-
vide additional value in system design. Also, while some transformations are
aspectual in nature, others are not. Transformation programs tend to operate in
terms of the syntax of the program being transformed. If other join points are
desired, it is the responsibility of the transformation program to somehow
manifest them. Thus, while it is possible to layer some kinds of aspect pro-
grams on top of a program transformation substrate, that is a separate piece of
implementation work.

www.manaraa.com

We would like to do a systematic analysis of the transformations developed
by this community, to see which of them can be used for providing different
kinds of aspect languages.

8.4 Subjective Programming

A natural question to ask is whether subjective programming [5] is AOP or vice
versa. We believe that AOP and subjective programming are different in im-
portant ways. Analogously to the way object-oriented programming supports
automatic selection among methods for the same message from different
classes, subjective programming supports automatic combination of methods
for a given message from different subjects. In both cases, the methods in-
volved are components in the AOP sense, since they can be well localized in a
generalized procedure. It is even possible to program in either an object-
oriented style or a subjective style on top of an ordinary procedural language,
without significant tangling. The same is not true of AOP. Thus, while the
aspects of AOP tend to be about properties that affect the performance or se-
mantics of components, the subjects of subjective programming tend to be ad-
ditional features added onto other subjects. We believe that subjective pro-
gramming is complementary to, and compatible with, AOP.

8.5 Other Engineering Disciplines

Many other engineering disciplines are based on well-established aspectual
decompositions. For example, mechanical engineers use static, dynamic and
thermal models of the same system as part of designing it. The differing mod-
els cross-cut each other in that the different properties of a system compose
differently. Similarly, some software development tools explicitly support par-
ticular aspectual decomposition: tools for OMT [29, 30] methods let program-
mers draw different pictures of how objects should work.

9. Conclusions

We have traced the complexity in some existing code to a fundamental differ-
ence in the kinds of properties that are being implemented. Components are
properties of a system, for which the implementation can be cleanly encapsu-
lated in a generalized procedure. Aspects are properties for which the imple-
mentation cannot be cleanly encapsulated in a generalized procedure. Aspects
and cross-cut components cross-cut each other in a system’s implementation.

 Based on this analysis, we have been able to develop aspect-oriented pro-
gramming technology that supports clean abstraction and composition of both
components and aspects. The key difference between AOP and other ap-

www.manaraa.com

proaches is that AOP provides component and aspect languages with different
abstraction and composition mechanisms. A special language processor called
an aspect weaver is used to coordinate the co-composition of the aspects and
components.

We have had good success working with AOP in several testbed applica-
tions. The AOP conceptual framework has helped us to design the systems,
and the AOP-based implementations have proven to be easier to develop and
maintain, while being comparably efficient to much more complex code written
using traditional techniques.

Acknowledgments

Thanks to Karl Lieberherr, Carine Lucas, Gail Murphy and Bedir Tekiner-
dogan who generously provided extensive comments on earlier drafts of the
paper, and to Andy Berlin, Geoff Chase, Patrick Cheung, John Gilbert, Arthur
Lee, Calton Pu, Alex Silverman, Marvin Theimer and Mark Yim with whom
we have had many discussions about AOP.

Thanks also to all the attendees of the AOP Friends Meetings, with whom
we spent an enjoyable two days discussing AOP and related ideas: Mehmet
Aksit, Lodewick Bergmans, Pierre Cointe, William Harrison, Jacques Malen-
fant, Satoshi Matsuoka, Kim Mens, Harold Ossher, Calton Pu, Ian Simmonds,
Perri Tarr, Bedir Tekinerdogan, Mark Skipper, and Patrick Steyaert

Bibliography

1. Aksit M., Wakita K., et al., Abstracting object interactions using composi-
tion filters, in proc. ECOOP'93 Workshop on Object-Based Distributed
Programming, pp. 152-184, 1993.

2. Bobrow D. G., DeMichiel L. G., et al., Common Lisp Object System Speci-
fication, in SIGPLAN Notices, vol. 23, 1988.

3. Chiba S., A Metaobject Protocol for C++, in proc. Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA
95), Austin, 1995.

4. Consel C., Program Adaptation based on Program Transformation, in
proc. ACM Workshop on Strategic Directions in Computing Research,
1996.

5. Harrison W. and Ossher H., Subject-oriented programming (a critique of
pure objects), in proc. Conference on Object-Oriented Programming:
Systems, Languages, and Applications, pp. 411--428, Washington D.C.,
1993.

www.manaraa.com

6. Henry S. and Kafura D., Software Structure Metrics Based on Information
Flow, in IEEE Transactions on Software Engineering, vol. SE-7: 509--518,
1981.

7. Ichisugi Y., Matsuoka S., et al., Rbc1: A reflective object-oriented con-
currrent language without a run-time kernel, in proc. International Work-
shop on New Models for Software Architecture '92; Reflection and Meta-
Level Architecture, pp. 24--35, 1992.

8. Irwin J., Loingtier J.-M., et al., Aspect-Oriented Programming of Sparse
Matrix Code, Xerox PARC, Palo Alto, CA. Technical report SPL97-007
P9710045, February, 1997.

9. Kiczales G., Foil for the Workshop on Open Implementation, Xerox
PARC, Web pages, http://www.parc.xerox.com/spl/eca/oi/workshop-
94/foil/main.html

10. Kiczales G., Why are Black Boxes so Hard to Reuse?, Invited Talk,
OOPSLA'94, Video tape, Web pages,
http://www.parc.xerox.com/spl/eca/oi/gregor-invite.html

11. Kiczales G., des Rivères J., et al., The Art of the Metaobject Protocol.
Book published by MIT Press, 1991.

12. Kiczales G., Lamping J., et al., Open Implementation Design Guidelines,
in proc. International Conference on Software Engineering,
(Forthcoming), 1997.

13. Lieberherr K. J., Silva-Lepe I., et al., Adaptive Object-Oriented Program-
ming Using Graph-Based Customization, in Communications of the ACM,
vol. 37(5): 94-101, 1994.

14. Lopes C. V. and Kiczales G., D: A Language Framework for Distributed
Programming, Xerox PARC, Palo Alto, CA. Technical report SPL97-010
P9710047, February, 1997.

15. Lopes C. V. and Lieberherr K., Abstracting Process-to-Function Relations
in Concurrent Object-Oriented Applications, in proc. European Confer-
ence on Object-Oriented Programming, pp. 81-99, Bologna, Italy, 1994.

16. Lopes C. V. and Lieberherr K., AP/S++: Case-Study of a MOP for Pur-
poses of Software Evolution, in proc. Reflection'96, pp. 167-184, S. Fran-
cisco, CA, 1996.

17. Maeda C., Lee A., et al., Open Implementation Analysis and Design, in
proc. Symposium on Software Reuse (To Appear, May 1997), 1997.

18. Mahoney J. V., Functional Visual Routines, Xerox Palo Alto Research
Center, Palo Alto SPL95-069, July 30, 1995, 1995.

19. Massalin H. and Pu C., Threads and Input/Output in the Synthesis Kernel,
in Proceedings of the 12th ACM Symposium on Operating Systems Princi-
ples :pp 191-201, 1989.

20. Matsuoka S., Watanabe T., et al., Hybrid Group Reflective Architecture
for Object-Oriented Concurrent Reflective Programming, in European
Conference on Object Oriented Programming :pp 231-250, 1991.

21. McClure C., A Model for Program Complexity Analysis, in proc. 3rd In-
ternational Conference on Software Engineering, Los Alamitos, CA, 1978.

www.manaraa.com

22. Mendhekar A., Kiczales G., et al., RG: A Case-Study for Aspect-Oriented
Programming, Xerox PARC, Palo Alto, CA. Technical report SPL97-009
P9710044, February, 1997.

23. Okamura H., Ishikawa Y., et al., Al-1/d: A distributed programming sys-
tem with multi-model reflection framework, in proc. International Work-
shop on New Models for Software Architecture '92; Reflection and Meta-
Level Architecture, pp. 36--47, 1992.

24. Okamura H., Ishikawa Y., et al., Metalevel Decomposition in AL-1/D, in
proc. International Symposium on Object Technologies for Advanced Soft-
ware, pp. 110-127, 1993.

25. Parnas D. L., Designing Software for Extension and Contraction, in proc.
3rd International Conference on Software Engineering, pp. 264-277, 1978.

26. Parnas D. L., On a 'Buzzword': Hierarchical Structure, in proc. IFIP Con-
gress 74, pp. 336-339, 1974.

27. Parnas D. L., On the Criteria to be Used in decomposing Systems into
Modules, in Communications of the ACM, vol. 15(2), 1972.

28. Pu C., Autrey T., et al., Optimistic Incremental Specialization: Streamlin-
ing a Commercial Operating System, in proc. 15th ACM Symposium on
Operating Systems Principles (SOSP'95), 1995.

29. Rational, Rational Web pages, Rational Software Corporation, Web pages,
http://www.rational.com

30. Rumbaugh J., Blaha M., et al., Object-Oriented Modeling and Design.
Book published by Prentice Hall, 1991.

31. Seiter L. M., Palsberg J., et al., Evolution of Object Behavior Using Con-
text Relations, in proc. Fourth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pp. 46--57, San Francisco, 1996.

32. Smith B. C., Reflection and Semantics in a Procedural Language LCS
Technical Report, M.I.T., Cambridge, MA, 1982.

33. Steele G. L., Common LISP: The Language, 2nd Edition. Book published
by Digital Press, 1990.

34. Wand M. and Friedman D. P., The Mystery of the Tower Revealed: A Non-
Reflective Description of the Reflective Tower, in Proceedings of the
ACM Conference on LISP and Functional Programming :pp 298-307.
ACM, 1986.

35. Watanabe T. and Yonezawa A., Reflection in an object-oriented concur-
rent language, in proc. ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 88), pp. 306--315,
San Diego, CA, 1988.

36. Yau S. and Collofello J., Some Stability Measures for Software Mainte-
nance, in tse, vol. SE-6: 545--552, 1980.

37. Yokote Y., The Apertos Reflective Operating System: The Concept and its
Implementation, in proc. Conference on Object-Oriented Programming:
Systems, Languages, and Applications, 1992.

38. Yonezawa A. and Watanabe T., An Introduction to Object-Based Reflec-
tive Concurrent Computation, in Proceedings of the ACM SIGPLAN

www.manaraa.com

Workshop on Object-Based Concurrent Programming, SIGPLAN Notices,
24(4), Agha G., Wegner P., et al., Eds., 1989.

